BEARdocs

Investigation into compactifed dimensions: Casimir energies and phenomenological aspects.

DSpace/Manakin Repository

Show simple item record

dc.contributor.advisor Cleaver, Gerald B.
dc.contributor.author Obousy, Richard K.
dc.contributor.other Baylor University. Dept. of Physics. en
dc.date.copyright 2008-12
dc.identifier.uri http://hdl.handle.net/2104/5261
dc.description.abstract A central theme in this dissertation is the notion of the quantum vacuum. To a particle physicist, the term 'vacuum' means the ground state of a theory. In general, this ground state must obey Lorentz invariance, at least with regards to 3 spatial dimensions, meaning that the vacuum must look identical to all observers. At all energies probed by experiments to date, the universe is accurately described as a set of quantum fields. If we take the Fourier transform of a free quantum field, each mode of a fixed wavelength behaves like a simple harmonic oscillator. A quantum mechanical property of a simple harmonic oscillator is that the ground state exhibits zero-point fluctuations as a consequence of the Heisenberg Uncertainty Principle. These fluctuations give rise to a number of phenomena; however, two are particularly striking. First, the Casimir Effect, which will be examined in detail in this dissertation is arguably the most salient manifestation of the quantum vacuum. In its most basic form it is realized through the interaction of a pair of neutral parallel conducting plates. The presence of the plates modifies the quantum vacuum, and this modification causes the plates to be pulled toward each other. Second is the prediction of a vacuum energy density, which is an intrinsic feature of space itself. Many attempts have been made to relate this vacuum energy to the cosmological constant Lambda, which is a common feature in modern cosmology; however, calculations are typically plagued either by divergences or by ridiculously high predictions which are far removed from observation. This chapter will first provide a brief historical review of the vacuum and then discuss in detail some of the attempts to explain the vacuum in the language of Quantum Field Theory (QFT). en
dc.rights Baylor University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. Contact librarywebmaster@baylor.edu for inquiries about permission. en
dc.subject Quantum field theory. en
dc.subject Casimir effect. en
dc.subject Quantum cosmology. en
dc.subject Particles (Nuclear physics) en
dc.subject Spare vehicles -- Propulsion systems. en
dc.title Investigation into compactifed dimensions: Casimir energies and phenomenological aspects. en
dc.type Thesis en
dc.description.degree Ph.D en
dc.rights.accessrights Worldwide access en
dc.contributor.department Physics. en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search BEARdocs


Advanced Search

Browse

My Account

Statistics