How to make large, void-free dust clusters in dusty

DSpace/Manakin Repository

BEARdocs is currently undergoing a scheduled upgrade. We expect the upgrade to be completed no later than Monday, March 2nd, 2015. During this time you will be able to access existing documents, but will not be able to log in or submit new documents.

Show simple item record Land, Victor Goedheer, Willem Jan
dc.identifier.citation V. Land, W. J. Goedheer, New J. Phys. 10, 123028 (2008) en
dc.description.abstract Collections of micrometer-sized solid particles immersed in plasma are used to mimic many systems from solid state and fluid physics, due to their strong electrostatic interaction, their large inertia, and the fact that they are large enough to be visualized with ordinary optics. On Earth, gravity restricts the so-called dusty plasma systems to thin, two-dimensional (2D) layers, unless special experimental geometries are used, involving heated or cooled electrons, and/or the use of dielectric materials. In micro-gravity experiments, the formation of a dust-free void breaks the isotropy of 3D dusty plasma systems. In order to do real 3D experiments, this void has somehow to be closed. In this paper, we use a fully self-consistent fluid model to study the closure of a void in a micro-gravity experiment, by lowering the driving potential. The analysis goes beyond the simple description of the ‘virtual void’, which describes the formation of a void without taking the dust into account. We show that selforganization plays an important role in void formation and void closure, which also allows a reversed scheme, where a discharge is run at low driving potentials and small batches of dust are added. No hysteresis is found this way. Finally, we compare our results with recent experiments and find good agreement, but only when we do not take charge-exchange collisions into account. en
dc.publisher IOP publishing en
dc.title How to make large, void-free dust clusters in dusty en
dc.type Article en
dc.identifier.doi 10.1088/1367-2630/10/12/123028
dc.description.keywords Dusty plasma en
dc.description.keywords Numerical simulation en
dc.description.keywords Void closure en
dc.description.keywords Microgravity en

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search BEARdocs

Advanced Search


My Account